## 一位在退学边缘疯狂试探的学渣为了高代不挂科做出的最终努力

33281378432849
## 1. 爪形行列式

1. 求$D_n = \left| {\begin{array}{*{20}{c}} {{x_1}}&1& \cdots &1\\ 1&{{x_2}}& \cdots &0\\ \vdots & \vdots & \ddots &0\\ 1&0&0&{{x_n}} \end{array}} \right|$

## 2. 两三角型行列式

1. 求$D_n = \left| {\begin{array}{*{20}{c}} {{x_1}}&b& \cdots &b\\ b&{{x_2}}& \cdots &b\\ \vdots & \vdots & \ddots &b\\ b&b&b&{{x_n}} \end{array}} \right|$
2. 求${D_n} = \left| {\begin{array}{*{20}{c}} {{x_1}}&b&b& \cdots &b\\ a&{{x_2}}&b& \cdots &b\\ a&a&{{x_3}}& \cdots &b\\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a&a&a& \cdots &{{x_n}} \end{array}} \right|$
3. 求${D_n} = \left| {\begin{array}{*{20}{c}} d&b&b& \cdots &b\\ c&x&a& \cdots &a\\ c&a&x& \cdots &a\\ \vdots & \vdots & \vdots & \ddots & \vdots \\ c&a&a& \cdots &x \end{array}} \right|$

## 3. 两条线型行列式

* 求${D_n} = \left| {\begin{array}{*{20}{c}} {{a_1}}&{{b_1}}&0& \cdots &0\\ 0&{{a_2}}&{{b_2}}& \cdots &0\\ 0&0&{{a_3}}& \cdots &0\\ \vdots & \vdots & \vdots & \ddots & \vdots \\ {{b_n}}&0&0& \cdots &{{a_n}} \end{array}} \right|$

## 4. 范德蒙德型行列式

* 求${D_n} = \left| {\begin{array}{*{20}{c}} {{a_1^n}}&{{a_1^{n-1}b_1}}& \cdots &a_1b_1^{n-1}&b_1^n\\ a_2^n&a_2^{n-1}b_2&\cdots & a_2b_2^{n-1} &b_2^n\\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_n^n & a_n^{n-1}b_n & \cdots & a_nb_n^{n-1}& b_n^n \\ a_{n+1}^n&a_{n+1}^{n-1}b_{n+1}&\cdots&a_{n+1}b_{n+1}^{n-1} &b_{n+1}^n \end{array}} \right|$

## 5. Hessenberg型行列式

* 求${D_n} = \left| {\begin{array}{*{20}{c}} 1&2&3& \cdots &n\\ 1&{ - 1}&0& \cdots &0\\ 0&2&{ - 2}& \cdots &0\\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0&0&0& \cdots &{1 - n} \end{array}} \right|$

## 6. 三对角型行列式

* 求${D_n} = \left| {\begin{array}{*{20}{c}} a&b&0& \cdots &0\\ c&a&b& \cdots &0\\ 0&c&a& \cdots &0\\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0&0&0& \cdots &a \end{array}} \right|$

## 7. 各行元素和相等型行列式

* 求${D_n} = \left| {\begin{array}{*{20}{c}} {1 + {x_1}}&{{x_1}}&{{x_1}}& \cdots &{{x_1}}\\ {{x_2}}&{1 + {x_2}}&{{x_2}}& \cdots &{{x_2}}\\ {{x_3}}&{{x_3}}&{1 + {x_3}}& \cdots &{{x_3}}\\ \vdots & \vdots & \vdots & \ddots & \vdots \\ {{x_n}}&{{x_n}}&{{x_n}}& \cdots &{1 + {x_n}} \end{array}} \right|​$

## 8. 相邻两行对应元素相差K倍型行列式

1. 求${D_n} = \left| {\begin{array}{*{20}{c}} 0&1&2& \cdots &{n - 1}\\ 1&0&1& \cdots &{n - 2}\\ 2&1&0& \cdots &{n - 3}\\ \vdots & \vdots & \vdots & \ddots & \vdots \\ {n - 1}&{n - 2}&1& \cdots &0 \end{array}} \right|$
2. 求${D_n} = \left| {\begin{array}{*{20}{c}} 1&a&{{a^2}}& \cdots &{{a^{n - 1}}}\\ {{a^{n - 1}}}&1&a& \cdots &{{a^{n - 2}}}\\ {{a^{n - 2}}}&{{a^{n - 1}}}&1& \cdots &{{a^{n - 3}}}\\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a&{{a^2}}&{{a^3}}& \cdots &1 \end{array}} \right|$