一位在退学边缘疯狂试探的学渣为了高代不挂科做出的最终努力

33281378432849
## 1. 爪形行列式

1. 求$D_n = \left| {\begin{array}{*{20}{c}}
   {{x_1}}&1& \cdots &1\\
   1&{{x_2}}& \cdots &0\\
    \vdots & \vdots & \ddots &0\\
   1&0&0&{{x_n}}
   \end{array}} \right|$

## 2. 两三角型行列式

1. 求$D_n = \left| {\begin{array}{*{20}{c}}
   {{x_1}}&b& \cdots &b\\
   b&{{x_2}}& \cdots &b\\
    \vdots & \vdots & \ddots &b\\
   b&b&b&{{x_n}}
   \end{array}} \right|$
2. 求${D_n} = \left| {\begin{array}{*{20}{c}}
   {{x_1}}&b&b& \cdots &b\\
   a&{{x_2}}&b& \cdots &b\\
   a&a&{{x_3}}& \cdots &b\\
    \vdots & \vdots & \vdots & \ddots & \vdots \\
   a&a&a& \cdots &{{x_n}}
   \end{array}} \right|$
3. 求${D_n} = \left| {\begin{array}{*{20}{c}}
   d&b&b& \cdots &b\\
   c&x&a& \cdots &a\\
   c&a&x& \cdots &a\\
    \vdots & \vdots & \vdots & \ddots & \vdots \\
   c&a&a& \cdots &x
   \end{array}} \right|$

## 3. 两条线型行列式

* 求${D_n} = \left| {\begin{array}{*{20}{c}}
  {{a_1}}&{{b_1}}&0& \cdots &0\\
  0&{{a_2}}&{{b_2}}& \cdots &0\\
  0&0&{{a_3}}& \cdots &0\\
   \vdots & \vdots & \vdots & \ddots & \vdots \\
  {{b_n}}&0&0& \cdots &{{a_n}}
  \end{array}} \right|$

## 4. 范德蒙德型行列式

* 求${D_n} = \left| {\begin{array}{*{20}{c}}
  {{a_1^n}}&{{a_1^{n-1}b_1}}& \cdots &a_1b_1^{n-1}&b_1^n\\ a_2^n&a_2^{n-1}b_2&\cdots & a_2b_2^{n-1} &b_2^n\\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_n^n & a_n^{n-1}b_n & \cdots & a_nb_n^{n-1}& b_n^n \\ a_{n+1}^n&a_{n+1}^{n-1}b_{n+1}&\cdots&a_{n+1}b_{n+1}^{n-1} &b_{n+1}^n
  \end{array}} \right|$

## 5. Hessenberg型行列式

* 求${D_n} = \left| {\begin{array}{*{20}{c}}
  1&2&3& \cdots &n\\
  1&{ - 1}&0& \cdots &0\\
  0&2&{ - 2}& \cdots &0\\
   \vdots & \vdots & \vdots & \ddots & \vdots \\
  0&0&0& \cdots &{1 - n}
  \end{array}} \right|$

## 6. 三对角型行列式

* 求${D_n} = \left| {\begin{array}{*{20}{c}}
  a&b&0& \cdots &0\\
  c&a&b& \cdots &0\\
  0&c&a& \cdots &0\\
   \vdots & \vdots & \vdots & \ddots & \vdots \\
  0&0&0& \cdots &a
  \end{array}} \right|$

## 7. 各行元素和相等型行列式

* 求${D_n} = \left| {\begin{array}{*{20}{c}}
  {1 + {x_1}}&{{x_1}}&{{x_1}}& \cdots &{{x_1}}\\
  {{x_2}}&{1 + {x_2}}&{{x_2}}& \cdots &{{x_2}}\\
  {{x_3}}&{{x_3}}&{1 + {x_3}}& \cdots &{{x_3}}\\
   \vdots & \vdots & \vdots & \ddots & \vdots \\
  {{x_n}}&{{x_n}}&{{x_n}}& \cdots &{1 + {x_n}}
  \end{array}} \right|​$

## 8. 相邻两行对应元素相差K倍型行列式

1. 求${D_n} = \left| {\begin{array}{*{20}{c}}
   0&1&2& \cdots &{n - 1}\\
   1&0&1& \cdots &{n - 2}\\
   2&1&0& \cdots &{n - 3}\\
    \vdots & \vdots & \vdots & \ddots & \vdots \\
   {n - 1}&{n - 2}&1& \cdots &0
   \end{array}} \right|$
2. 求${D_n} = \left| {\begin{array}{*{20}{c}}
   1&a&{{a^2}}& \cdots &{{a^{n - 1}}}\\
   {{a^{n - 1}}}&1&a& \cdots &{{a^{n - 2}}}\\
   {{a^{n - 2}}}&{{a^{n - 1}}}&1& \cdots &{{a^{n - 3}}}\\
    \vdots & \vdots & \vdots & \ddots & \vdots \\
   a&{{a^2}}&{{a^3}}& \cdots &1
   \end{array}} \right|$

发表评论

电子邮件地址不会被公开。 必填项已用*标注