【算法笔记】Burnside引理与Pólya定理

前言

昨天hht来给窝萌增长了姿势水平
hht真的好神啊!伏地膜!

问:“你搞OI时如何平衡高考与竞赛”
hht:“我不用学习也能考很好,我在高一的时候已经把高中内容看完了”

正文

hht主要讲了Burnside引理的不完全证明和用Burnside引理推出Pólya定理
下面主要围绕这两方面来讨论

Burnside引理的不完全证明

有一个前置结论hht没有证明,说是需要引入很多无关的概念:

$|Z_k| \cdot |E_k| = |G|$

其中$|E_k|$表示一个等价类的大小,$|Z_k|$表示作用在这个等价类上使等价类不变的置换的数量
这个引理的证明似乎要用到群里边的轨道?我们可以参见这里:https://en.wikipedia.org/wiki/Group_action#Orbits_and_stabilizers
以下的内容建立在我们认为这个引理是正确的基础上

我们先来看一看Burnside引理的形式:$N = \frac{1}{|G|} \sum\limits_{g \in G}{\chi (g)}$
那么我们只需要证明:$N \cdot |G| = \sum\limits_{g \in G}{\chi (g)}$
对于$\sum\limits_{g \in G}{\chi (g)}$,我们实际上是先枚举置换,再枚举染色情况,再看是不是一个不动点
我们考虑换一个枚举顺序,我们枚举所有的染色情况,然后看有多少置换可以使这个染色情况成为不动点
那么这不就是$|Z_k| \cdot |E_k|$吗?于是$N \cdot |G| = \sum{|Z_k| \cdot |E_k|} = N \cdot G$,得证

使用Burnside引理推导Pólya定理

我们还是考虑枚举置换

如果一个置换可以使一种染色情况成为不动点
那么这个置换的每一个循环节只能被染成同一种颜色
所以每一种置换$g$我们有$k^{m(g)}$种染色方案($k$为可用的颜色数,$m(g)$为置换$g$的循环节)
于是我们就不用枚举所有的染色情况了,可以直接用$k^{m(g)}$计算

于是Pólya定理的公式就变成了$N = \frac{1}{|G|} \sum\limits_{g \in G}{k^{m(f)}}$
这个证明过程也非常直观地给出了Pólya定理不能解决带有颜色限制的染色问题的原因

16 thoughts to “【算法笔记】Burnside引理与Pólya定理”

  1. I loved as much as you will receive carried out right here. The sketch is tasteful, your authored subject matter stylish. nonetheless, you command get got an nervousness over that you wish be delivering the following. unwell unquestionably come further formerly again as exactly the same nearly very often inside case you shield this hike.

  2. 456786 964088Really properly written story. It will probably be helpful to every person who utilizes it, as well as myself. Keep up the great function – i will certainly read much more posts. 32224

  3. 554286 708300Incredible! This blog looks just like my old one! Its on a entirely different topic but it has pretty much the same layout and design. Fantastic choice of colors! 169481

  4. 472174 722430I was reading some of your content on this site and I feel this internet website is truly informative! Maintain putting up. 279192

Leave a Reply to custom decals for trucks Cancel reply

Your email address will not be published. Required fields are marked *